
Various 1,2,3-triazole derivatives are biologically ac-
tive [2, 3], among them also nucleoside-analogous com-
pounds like N-glycosylated 4-halomethyl 1H- or 2H-
1,2,3-triazoles. The latter show bactericide and viricide
action [4–6] or are usable as radiomimetic substances
[7]. The properties of such mimetic products may be
commonly influenced by modifications of the hetero-
cyclic but also of the carbohydrate moiety.

An effective method of preparation for 1,2,3-triazole–
based nucleoside analogues and reversed nucleoside
analogues, respectively, is the 1,3-dipolar cycloaddition
starting from azidosugars. Some examples were report-
ed in the literature [8–11]; (see ref. [12] as well). Re-
cently, we synthesised fluorinated 1,2,3-triazole–based
reversed nucleoside analogues by 1,3-dipolar cycload-
dition from azido-deoxy sugar derivatives (D-galactose,
D-altrose) and (E)-1-(F-alkyl)-2-phenylsulfonyl-ethenes
[1]. As everybody knows, fluorine atoms or trifluoro-
methyl groups strategically positioned in target mole-
cules may greatly modify their properties, biological
activity and selectivity; for typical examples see ref.
[13–17].

In this paper we report on 1,3-dipolar cycloadditions
of sugar azides (D-galactose and D-gulose) with 3,3,3-
trifluoropropinyl-benzene. This dipolarophile was al-
ready used by Meazza and Zanardi [18] to synthesise
various aryl-trifluoromethyl-1,2,3-triazoles from aro-
matic azides.
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Abstract. The title compounds were synthesized by 1,3-di-
polar cycloaddition of 3,3,3-trifluoropropinyl benzene (2) to
the azido sugars 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl
azide (1), 6-O-acetyl-4-O-cyclohexylcarbamoyl-2,3-O-(2,2,2-
trichloroethylidene)-β-D-gulopyranosyl azide (6), 6-azido-6-
deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose
(12), and methyl 6-azido-4-O-cyclohexylcarbamoyl-6-deoxy-
2,3-O-(2,2,2-trichloroethylidene)-β-D-gulopyranoside (16),
respectively. Because of the dissymmetry of the dipolarophile
2, always two regioisomeric products were obtained, the nu-
cleoside-analogous compounds 3/4 (from 1) and 7/8 (from
6), respectively, and the reversed nucleosides 13/14 (from 12)

Results and Discussion

1,3-Dipolar cycloadditions of 2,3,4,6-tetra-O-acetyl-β-
D-galactopyranosyl azide (1) [19], 6-O-acetyl-4-O-cyc-
lohexylcarbamoyl-2,3-O-(2,2,2-trichloroethylidene)-β-
D-gulopyranosyl azide (6) [20], 6-azido-6-deoxy-1,2:
3,4-di-O-isopropylidene-α-D-galactopyranose (12) [21],
and methyl 6-azido-4-O-cyclohexylcarbamoyl-6-deoxy-
2,3-O-(2,2,2-trichloroethylidene)-β-D-gulopyranoside
(16) [22] with 3,3,3-trifluoropropinyl-benzene (2) [23]
were carried out by refluxing the reactants in toluene;
Schemes 1 and 2.

In order to achieve a complete conversion of the
azido sugars, an excess of 3,3,3-trifluoropropinyl-ben-
zene (2) was required. However, non-specific side re-
actions occurred due to the relatively long reaction times
(10–19 h) and a reaction temperature of 110 °C. They
were indicated by carbonisation of the solutions and
could be only partially suppressed by working under an
argon atmosphere. Nevertheless, the two expected ma-
jor products, 4-trifluoromethyl-5-phenyl and 5-trifluoro-
methyl-4-phenyl-1,2,3-triazole, were obtained in good
yields (Tab. 1). Thus, 2,3,4,6-tetra-O-acetyl-β-D-galac-
topyranosyl azide (1) and 3,3,3-trifluoropropinyl-ben-
zene (2) yielded the 5-trifluoromethyl-4-phenyl-1,2,3-
triazole derivative 3 and its 4-trifluoromethyl-5-phenyl
regioisomer 4 after 14 h refluxing. After separation by

and 17/18 (from 16), respectively. Protecting group chemis-
try like transesterification, deacetalation, hydrodechlorination
is demonstrated in some cases. Thus, the trichloroethylidene
derivatives 7, 8, 17, and 18 were converted into the corre-
sponding ethylidene derivatives (9, 10, 19, 20) by treatment
with tributylstannane/AIBN. An X-ray analysis is given for
the 1-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-4-tri-
fluoromethyl-5-phenyl-1,2,3-triazole (4) and for the 1-[6-O-
acetyl-4-O-cyclohexylcarbamoyl-2,3-O-(2,2,2-trichloroethyl-
idene)-β-D-gulopyranosyl]-4-trifluoromethyl-5-phenyl-1,2,3-
triazole (7).
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HPLC, the compounds were isolated in yields of 30%
(3) and 49% (4), respectively.

The results of the cycloadditions of 6-O-acetyl-4-O-
cyclohexylcarbamoyl-2,3-O-(2,2,2-trichloroethylidene)
-β-D-gulopyranosyl azide (6), 6-azido-6-deoxy-1,2:3,4-
di-O-isopropylidene-α-D-galactopyranose (12), and
methyl 6-azido-4-O-cyclohexylcarbamoyl-6-2,3-deoxy-
O-(2,2,2-trichloroethylidene)-β-D-gulopyranoside (16)
with 3,3,3-trifluoropropinyl-benzene 2 are summarised
in Tab.1, Scheme 1 and Scheme 2. Two regioisomeric
trifluoromethyl-1,2,3-triazoles are formed as found for
azi-de 1. It is noteworthy that cycloadditions of sugar

azides with (E)-1-(F-alkyl)-2-phenylsulfonyl-ethenes
yield only a single isomer – the corresponding 4-(F-
alkyl)-1,2,3-triazole derivative [1]; see also ref. [11, 24].

The assignment of the structures of the regioisomer-
ic pairs 3/4, 7/8, 13/14, and 17/18 based on 1H NOE
measurements, 19F NMR data, and X-ray analyses. Thus,
the 4-trifluoromethyl-5-phenyl-1,2,3-triazole derivative
4 shows, in contrast to its regioisomer 3, couplings bet-
ween 1-H of the sugar moiety and the phenyl protons.
G. Meazza, G. Zanardi [18] reported that trifluorome-
thyl groups linked to a 1,2,3-triazole ring show a char-
acteristic alteration of their chemical shifts in 19F NMR
spectra in dependence of their location. 19F signals of
trifluoromethyl groups in 4-position are shifted 2–4 ppm
to higher field than those of trifluoromethyl groups lo-
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Tab. 1 1,3-Dipolar cycloadditions of 1, 6, 12, and 16 with 3,3,3-trifluoropropinyl-benzene (2)

Azide Reaction Yield Ratio of the 19F NMR data of the products (δ/ppm)
time (h) (%) a) isomeric products 5-CF3                            4-CF3

1 14 79   3 :   4 = 1 : 1.6 –55.5 (3)                     –59.2 (4)
6 19 78   8 :   7 = 1 : 1.5 –56.2 (8)                     –59.1 (7)
12 13 82 13 : 14 = 1 : 1.4 –55.5 (13)                   –58.9 (14)
16 10 83 18 : 17 = 1 : 1.5 –55.5 (18)                   –59.0 (17)

a) After column chromatographic separation
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cated in 5-position [18]. The same applies to all pairs of
regioisomers described in this paper (Table 1). Moreo-
ver, the structures of the crystalline 4-trifluoromethyl
isomers 4 (Fig. 1) and 7 (Fig. 2) could be confirmed by
X-ray analyses. The Puckering parameters (Q = 0.525
Å, θ = 19.0°, ϕ = 342°) indicate a conformation bet-
ween an ideal 4C1-chair, an OE-half boat and an OH5-
half chair conformation for the β-D-gulopyranosyl rest
of 7. X-ray analyses of two other gulose derivatives
shown similar structures [20].

(Scheme 1). Simultaneous transesterification of acetyl
and carbamoyl groups is possible with boiling Zemplén
reagent. Thus, the crystalline 1-(2,3-O-ethylidene-β-D-
gulopyranosyl)-5-trifluoromethyl-4-phenyl-1,2,3-tria-
zole (11) was generated from 10 after 10 h in 81% yield
(Scheme 1). 1-(6-Deoxy-1,2:3,4-di-O-isopropylidene-
α-D-galactopyranos-6-yl)-4-trifluoromethyl-5-phenyl-
1,2,3-triazole (14) was deacetalated with 60% aqueous
trifluoroacetic acid (TFA) at room temperature. After
3 h, 1-(6-deoxy-D-galactopyranos-6-yl)-4-trifluorome-
thyl-5-phenyl-1,2,3-triazole (15) was isolated in quan-
titative yield (Scheme 2).

Because a trichloroethylidene group is acid-stable,
deacetalation of the D-gulose derivatives 7, 8, 17, and
18 occurs only after conversion of this group into an
ethylidene acetal. On heating of 7, 8, 17, and 18, re-
spectively, with tributylstannane/AIBN in toluene for
1.5–3.5 h, the ethylidene derivatives 9, 10, 19, and 20,
respectively, were isolated in yields of 90–97% [25]
(Scheme 1 and 2); for previous applications of this pro-
cedure see e.g. ref. [26, 27]. An ethylidene group may
be cleaved by treatment of the acetals with TFA; see
e.g. ref. [27]. However, the test to remove selectively
the ethylidene group of compound 11 by treatment with
TFA at 50 °C was not successful. The glycosidic bond
was also cleaved under these reaction conditions; con-
cerning this see also ref. [8–10, 28].

Experimental

Column chromatography: Silica Gel 60 (63 – 200 µm,
Merck); thin-layer chromatography (TLC): Silica Gel foils
60 F254 (Merck). NMR spectra: Bruker AC 250 equipment,
1H NMR and 13C(1H) NMR referred to TMS. Melting points:
Polarizing microscope Leitz (Laborlux 12 Pol) equipped with
a hot stage (Mettler FP 90).

Details of the Crystal Structure Analysis: For the X-ray
structure determination crystals of 4 and 7 were checked by
rotational photographs and suitable reduced cells were found
by the automatic cell determination routine. The data collec-
tions were performed in routine ω-scan, the structures were
solved by direct methods (Siemens SHELXTL, Vers. 5.10
SGI/IRIX 5.3 for 4 and Vers. 5.03 MS-DOS for 7) and re-
fined by the full matrix least-squares method of SHELXL-97
(G. M. Sheldrick Universität Göttingen 1997). All non-hy-
drogen atoms were refined anisotropically. The H-atoms were
put into theoretical positions and refined using the riding
model. Diffractometer: Siemens P4; radiation: λ = 0.71073 Å
(Mo-Kα) with graphite monochromator.

Further details for 4: Crystal size: 0.76 × 0.66 × 0.44 mm3;
formula: C23H24F3N3O9; formula weight: 543.45; tempera-
ture: 293(2) K; crystal system: monoclinic; space group: P21;
unit cell dimensions: a = 9.6260(10) Å, b = 9.511(1) Å, c =
14.591(1) Å, β =106.19(1); volume: 1282.9(2) Å3; Z = 2;
density (calculated): 1.407 Mg/m3; absorption coefficient:
0.122 mm–1; F(000): 564; Θ range for data collection: 2.20 to
22.00º; index ranges: –10< = h < = 10; –10 < = k < = 10, –15

Fig. 1 X-ray structure of 1-(2,3,4,6-tetra-O-acetyl-β-D-galac-
topyranosyl)-4-trifluoromethyl-5-phenyl-1,2,3-triazole (4);
30% probability of the terminal ellipsoids

Fig. 2 X-ray structure of 1-[6-O-acetyl-4-O-cyclohexylcarb-
amoyl-2,3-O-(2,2,2-trichloroethylidene)-β-D-gulopyranosyl]-
4-trifluormethyl-5-phenyl-1,2,3-triazole (7); 30% probabili-
ty of the terminal ellipsoids.

Deprotection of the sugar moieties: Well-known meth-
ods of carbohydrate chemistry were used to generate
1,2,3-triazoles which are connected with a deprotected
carbohydrate rest. Thus, 1-(2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)-4-trifluoromethyl-5-phenyl-1,2,3-tri-
azole (4) was deacetylated by Zemplén reagent. The
syrupy 1-(β-D-galactopyranosyl)-4-trifluoromethyl-5-
phenyl-1,2,3-triazole (5), isolated in quantitative yield
after a reaction time of 7 h, crystallized from acetone
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< = l < = 15; reflections collected: 3582; independent reflec-
tions: 3142, R(int) = 0.0199; completeness to Θ = 22.00º,
99.9% ; data/restraints/parameters: 3142/1/343; goodness-of
fit on F2: 1.048; final R indices [I>2σ(I)]: R1 = 0.0462; wR2
= 0.1271; R indices (all data): R1 = 0.0479; wR2 = 0.1293;
largest diff. peak and hole: 0.408/-0.228 e/Å3.
Further details for 7: Crystal size: 0.62 × 0.60 × 0.57 mm3;
formula: C26H28Cl3F3N4O7; formula weight: 671.87; temper-
ature: 293(2) K; crystal system: orthorhombic; space group:
P212121; unit cell dimensions: a = 10.203(2) Å, b =
13.665(3)Å, c = 22.587(5)Å; volume: 3149.2(11) Å3; Z = 4;
density (calculated): 1.417Mg/m3; absorption coefficient:
0.357mm–1; F(000): 1384; Θ range for data collection: 1.80
to 22.00º; index ranges: –10 < = h < = 10; –14 < = k < = 14;
–23 < = l < = 23; reflections collected: 4391; independent
reflections: 3828, R (int) = 0.0294; completeness to Θ =
22.00º, 99.9%; data/restraints/parameters: 3828/0/401; good-
ness-of fit on F2: 1.019; final R indices [I>2σ(I)]: R1 = 0.0543;
wR2 = 0.1289; R indices (all data): R1 = 0.0781; wR2 =
0.1448; largest diff. peak and hole: 0.208/–0.235 e/Å3.
Crystallographic data (excluding structure factors) for the
structures have been deposited with the Cambridge Crystal-
lographic Data Centre as supplementary publication no.
CCDC-139500 (4) and CCDC-139501 (7). Copies of the data
can be obtained, free of charge on application to The Direc-
tor; CCDC; 12 Union Road, Cambridge CB2 1EZ, UK, (fax:
Int.code + (1223) 336-033; e-mail: deposit@ccdc.cam.ac.uk).

1-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-5-trifluoro-
methyl-4-phenyl-1,2,3-triazole (3) and 1-(2,3,4,6-tetra-O-
acetyl-β-D-galactopyranosyl)-4-trifluoromethyl-5-phenyl-
1,2,3-triazole (4)

A solution of 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl
azide (1) (1.12 g, 3.0 mmol) and 3,3,3-trifluoropropinyl-ben-
zene (2) [23] (0.68 g, 4.0 mmol) in 15 ml of toluene were
refluxed for 14 h under argon atmosphere. After the mixture
was concentrated under reduced pressure, the two regioiso-
mers were isolated from the residue by column chromato-
graphic separation (toluene/EtOAc 10 : 1 v/v). Yield of com-
pound 3: 0.49 g (30%), Rf = 0.17; m.p. 141–143 °C; [α]D

21

–11.1 (CHCl3, c = 1.01); compound 4: 0.80 g (49%), Rf =
0.13; m.p. 114–115 °C; [α]D

20 –9.1 (CHCl3, c = 1.01).
3: 1H NMR (250 MHz, CDCl3): δ/ppm = 7.57–7.65 (m, 2H,
phenyl-H), 7.41–7.49 (m, 3H, phenyl-H), 6.14 (dd, 1H,
3J1-H/2-H ≈ 9.1, 3J2-H/3-H ≈ 10.1, 2-H), 5.87 (d, 1H, 1-H), 5.54
(dd, 1H, 3J3-H/4-H ≈  3.4, 4-H), 5.27 (dd, 1H, 3-H), 4.09–4.27
(m, 3H, 5-H, 6-H, 6'-H), 2.20 (s, 3H, acetyl-CH3), 2.04 (s,
3H, acetyl-CH3), 2.02 (s, 3H, acetyl-CH3), 1.92 (s, 3H,
acetyl-CH3). – 13C{1H} NMR (75.5 MHz, CDCl3): δ/ppm =
170.3, 170.1, 169.9, 168.4 (4 acetyl-CO), 148.9 (triazole C-
4), 129.6, 129.1, 128.4, 128.3, 128.1 (phenyl-C), 123.6 (q,
2Jtriazole C-5/F-A,B,C ≈  40.8, triazole C-5), 120.0 (q, 1JCF3/F-A,B,C
≈  269.5, CF3), 86.3 (C-1), 74.0, 71.3, 66.9, 66.8 (C-2,3,4,5),
61.2 (C-6), 20.5, 20.4, 20.3 (acetyl-CH3). – 19F{1H} NMR
(235.4 MHz, CDCl3): δ/ppm = –55.5 (CF3).
C23H24F3N3O9 Calcd.: C 50.83 H 4.45 N 7.73
(543.5) Found: C 50.77 H 4.44 N 7.88.
4:  1H NMR (250 MHz, CDCl3): δ/ppm = 7.44–7.62 (m, 5H,

phenyl-H), 5.77 (dd, 1H, 3J1-H/2-H ≈ 9.2, 3J2-H/3-H ≈10.1, 2-H),
5.60 (d, 1H, 1-H), 5.38 (dd, 1H, 3J3-H/4-H ≈ 3.3, 3J4-H/5-H ≈ 1.2,
4-H), 5.07 (dd, 1H, 3-H), 4.11 (dd, 1H, 3J5-H/6-H ≈ 8.4,
2J6-H/6'-H ≈11.9, 6-H), 4.05 (dd, 1H, 3J5-H/6'-H ≈ 4.6, 6'-H), 4.02
(ddd, 1H, 5-H), 2.05 (s, 3H, acetyl-CH3), 2.02 (s, 3H, acetyl-
CH3), 1.95 (s, 3H, acetyl-CH3), 1.87 (s, 3H, acetyl-CH3). –
13C{1H} NMR (75.5 MHz, CDCl3): δ/ppm = 170.2, 169.9,
169.8, 168.4 (4 acetyl-CO), 138.6 (q, 3Jtriazole C-5/F-A,B,C ≈ 1.9,
triazole C-5), 137.2 (q, 2Jtriazole C-4/F-A,B,C ≈ 38.2, triazole C-
4), 130.8, 130.4, 128.6 (5 phenyl-CH), 123.8 (phenyl-C), 120.5
(q, 1JCF3/F-A,B,C ≈ 269.0, CF3), 85.6 (C-1), 74.0, 71.1, 66.9,
66.7 (C-2,3,4,5), 61.3 (C-6), 20.6, 20.5, 20.4, 20.2 (4 acetyl-
CH3). – 19F{1H} NMR (235.4 MHz, CDCl3): δ/ppm  = –59.2
(CF3).
C23H24F3N3O9 Calcd.: C 50.83 H 4.45 N 7.73
(543.5) Found: C 50.75 H 4.55 N 7.65.

1-(β-D-Galactopyranosyl)-4-trifluoromethyl-5-phenyl-1,2,3-
triazole (5)

A solution of 4 (1.0 g, 1.84 mmol) in 1% methanolic sodium
methoxide (30 ml) was stirred for 7 h at r.t., and subsequently
neutralized with an acidic ion exchanger resin (Amberlite IR-
120). After evaporation of the solvent under reduced pres-
sure, the residue was recrystallized from acetone yielding
0.69 g (100%) of 5, [α]D24 –2.9 (MeOH, c = 1.00). On heat-
ing decomposition was observed above 110 °C. – 1H NMR
(250 MHz, CD3OD): δ/ppm = 7.51–7.65 (m, 5H, phenyl-H),
5.60 (d, 1H, 3J1-H/2-H ≈ 9.2, 1-H), 4.65 (dd, 1H, 3J2-H/3-H ≈ 9.5,
2-H), 3.89 (dd, 1H, 3J3-H/4-H ≈ 3.3, 3J4-H/5-H ≈ 1.0, 4-H), 3.81
(dd, 1H, 3J5-H/6-H ≈ 7.5, 2J6-H/6’-H ≈ 11.9, 6-H), 3.70 (dd, 1H,
3J5-H/6'-H ≈ 4.2, 6'-H), 3.61 (ddd, 1H, 5-H), 3.53 (dd, 1H, 3-
H). – 13C{1H} NMR (75.5 MHz, CD3OD): δ/ppm  = 132.0,
131.3, 130.1 (phenyl-CH), 125.3 (phenyl-C), 87.9 (C-1), 80.3,
75.6, 70.4, 70.0 (C-2,3,4,5), 62.6 (C-6). – 19F{1H} NMR
(235.4 MHz, CD3OD): δ/ppm  = –56.5 (CF3).
C15H16F3N3O5 Calcd.: C 48.01 H 4.30 N 11.20
(375.3) Found: C 48.20 H 4.50 N 10.82.

1-[6-O-Acetyl-4-O-cyclohexylcarbamoyl-2,3-O-(2,2,2-
trichloroethylidene)-β-D-gulopyranosyl]-4-trifluoromethyl-
5-phenyl-1,2,3-triazole (7) and 1-[6-O-acetyl-4-O-cyclo-
hexylcarbamoyl-2,3-O-(2,2,2-trichloroethylidene)-β-D-gu-
lopyranosyl]-5-trifluoromethyl-4-phenyl-1,2,3-triazole (8)

A solution of the azide 6 (1.51 g, 3.0 mmol) and 3,3,3-tri-
fluoropropinyl-benzene 2 [23] (0.68 g, 4.0 mmol) in toluene
(15 ml) was refluxed for 19 h under argon atmosphere. After
the mixture was concentrated under reduced pressure, the two
regioisomers (7) and (8) were isolated from the residue by
column chromatographic separation (toluene/EtOAc 40 : 1
v/v). Yield of compound 7 0.95 g (47%), Rf = 0.14;  m.p.
161–162 °C; [α]D24 –59.7 (CHCl3, c = 0.94); yield of 8 1) ,
0.62 g (31%), Rf = 0.17.
7: 1H NMR (250 MHz, CDCl3): δ/ppm  = 7.44–7.67 (m, 5H,
phenyl-H), 5.68 (dd, 1H, 3J1-H/2-H ≈ 8.2, 3J2-H/3-H ≈ 5.3, 2-H),
5.27 (dd, 1H, 3J3-H/4-H ≈ 2.5, 3J4-H/5-H ≈ 1.7, 4-H), 5.23 (s, 1H,
acetal-H), 5.10 (d, 1H, 1-H), 4.88 (dd, 1H, 3-H), 4.83 (d, 1H,
3Jcarbamoyl-NH/cyclohexyl-CH ≈ 8.1, carbamoyl-NH), 4.23 (dd, 1H,

1) Compound 8 was contaminated by small amounts of the starting material; complete purification by HPLC was not success-
ful. Therefore, a full analytical characterization was carried out only after the reduction of 8 to the ethylidene acetal 10.
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3J5-H/6-H ≈ 4.9, 2J6-H/6'-H ≈ 11.5, 6-H), 4.15 (dd, 1H, 3J5-H/6'-H ≈
7.0, 6'-H), 4.07 (ddd, 1H, 5-H), 3.30–3.60 (m, 1H, cyclohexyl-
CH), 2.09 (s, 3H, acetyl-CH3), 1.87–2.02 (m, 2H, cyclohexyl-
CH2), 1.54–1.82 (m, 3H, cyclohexyl-CH2), 1.06–1.47 (m,
5H, cyclohexyl-CH2). – 13C{1H} NMR (62.9 MHz, CDCl3):
δ/ppm  = 170.2 (acetyl-C=O), 153.4 (carbamoyl-CO), 131.2,
129.9, 129.2, (phenyl-CH), 123.6 (phenyl-C), 106.6 (acetal-
C), 98.2 (-CCl3), 82.9 (C-1), 76.7, 73.8, 73.5, 65.4 (C-2,3,4,5),
62.0 (C-6), 50.4 (cyclohexyl-CH), 33.1, 25.4, 24.7 (cyclo-
hexyl-CH2), 20.7 (acetyl-CH3). – 19F{1H} NMR (235.4 MHz,
CDCl3): δ/ppm  = –59.1 (CF3).
C26H28Cl3F3N4O7 Calcd.: C 46.48 H 4.20 N 8.34
(671.9) Found: C 46.55 H 4.20 N 8.26.
8: 1H NMR (250 MHz, CDCl3): δ/ppm  = 7.57–7.68 (m, 2H,
phenyl-H), 7.41–7.51 (m, 3H, phenyl-H), 5.90 (dd, 1H,
3J1-H/2-H ≈ 7.9, 3J2-H/3-H ≈ 5.4, 2-H), 5.67 (d, 1H, 1-H), 5.59
(s, 1H, acetal-H), 5.35 (dd, 1H, 3J3-H/4-H ≈ 2.5, 3J4-H/5-H ≈ 1.6,
4-H), 4.98 (dd, 1H, 3-H), 4.77 (d, 1H, 3Jcarbamoyl-NH/cyclo-

hexyl-CH ≈ 8.1, carbamoyl-NH), 4.08–4.26 (m, 3H, 5-H, 6-H,
6'-H), 3.32–3.58 (m, 1H, cyclohexyl-CH), 2.07 (s, 3H, acetyl-
CH3), 1.83–2.03 (m, 2H, cyclohexyl-CH2), 1.51–1.80 (m, 3H,
cyclohexyl-CH2), 1.03–1.45 (m, 5H, cyclohexyl- CH2). –
13C{1H} NMR (62.9 MHz, CDCl3): δ/ppm  = 170.4 (acetyl-
CO), 153.4 (carbamoyl-CO), 129.7, 129.1, 128.6, (phenyl-
CH), 128.2 (phenyl-C), 106.8 (acetal-C), 98.4 (-CCl3), 84.8
(C-1), 76.1, 73.2, 71.8, 65.6 (C-2,3,4,5), 61.8 (C-6), 50.3 (cy-
clohexyl-CH), 33.1, 25.4, 24.7 (cyclohexyl-CH2), 20.6 (acetyl-
CH3). – 19F{1H} NMR (235.4 MHz, CDCl3): δ/ppm  = –56.2
(CF3).

1-(6-O-Acetyl-4-O-cyclohexylcarbamoyl-2,3-O-ethylidene-
β-D-gulopyranosyl)-4-trifluoromethyl-5-phenyl-1,2,3-tri-
azole (9)

A solution of 7 (0.67 g, 1.0 mmol), Bu3SnH (0.92 ml,
3.5 mmol) and AIBN (10 mg, 0,06 mmol) in dry toluene
(10 ml) was heated at 75 °C under stirring (Ar atmosphere).
When the reaction was finished (1.5 h, TLC control) the so-
lution was cooled down and was shaken with 30% aq KF
(5 ml) for 45 min. Bu3SnF precipitated and was removed by
filtration. Subsequently, the organic phase was separated,
washed with 3% aq. NaHSO4 (5 ml) and twice with water
(5 ml), dried (MgSO4), and concentrated under reduced pres-
sure. The residue was purified by column chromatography
(Rf = 0.27, toluene/EtOAc = 9 : 1 v/v). Yield 0.54 g (95%),
m.p. 145–147 °C (i-PrOH), [α]D

23 –93.1 (CHCl3, c = 1.11). –
1H NMR (250 MHz, CDCl3): δ/ppm = 7.37–7.64 (m, 5H,
phenyl-H), 5.35 (dd, 1H, 3J1-H/2-H ≈ 8.4, 3J2-H/3-H ≈ 4.7, 2-H),
5.25 (q, 1H, 3Jacetal-H/ethylidene-CH3 ≈ 4.9,  acetal-H), 5.17 (dd,
1H, 3J3-H/4-H ≈ 2.6, 3J4-H/5-H ≈ 1.5, 4-H), 5.07 (d, 1H, 1-H),
4.82 (d, 1H, 3Jcarbamoyl-NH/cyclohexyl-CH ≈ 7.9, carbamoyl-NH),
4.31 (dd, 1H, 3-H), 4.22 (dd, 1H, 3J5-H/6-H ≈ 5.1, 2J6-H/6'-H ≈
11.7, 6-H), 4.14 (dd, 1H, 3J5-H/6'-H ≈ 1.4, 6'-H), 4.04 (ddd, 1H,
5-H), 3.30–3.62 (m, 1H, cyclohexyl-CH), 2.08 (s, 3H, acetyl-
CH3), 1.87–2.02 (m, 2H, cyclohexyl-CH2), 1.52–1.80 (m,
3H, cyclohexyl-CH2), 1.26 (d, 3H, ethylidene-CH3), 1.06–
1.48 (m, 5H, cyclohexyl-CH2). – 13C{1H} NMR (75.5 MHz,
CDCl3): δ/ppm  = 170.3 (acetyl-CO), 153.8 (carbamoyl-CO),
139.1 (q, 3Jtriazole C-5/F-A,B,C ≈ 2.1, triazole C-5), 136.3 (q, 2Jtri-

azole C-4/F-A,B,C ≈ 38.0, triazole C-4), 130.9, 129.8, 129.0, (phe-
nyl-CH), 123.8 (phenyl-C), 102.6 (acetal-C), 82.6 (C-1), 73.9,
73.5, 71.6, 66.3 (C-2,3,4,5), 62.4 (C-6), 50.3 (cyclohexyl-CH),

33.2, 25.4, 24.7 (cyclohexyl-CH2), 21.4, 20.7 (ethylidene-CH3,
acetyl-CH3). – 19F{1H} NMR (235.4 MHz, CDCl3): δ/ppm =
–59.1 (CF3).
C26H31F3N4O7 Calcd.: C 54.93 H 5.50 N 9.85
(568.5) Found: C 55.22 H 5.66 N 9.62.

1-(6-O-Acetyl-4-O-cyclohexylcarbamoyl-2,3-O-ethylidene-
β-D-gulopyranosyl)-5-trifluoromethyl-4-phenyl-1,2,3-tri-
azole (10)

The trichloroethylidene moiety of 8 (0.67 g, 1.0 mmol) was
hydrodechlorinated with Bu3SnH/AIBN as described for com-
pound 9 (reaction time 2 h). After column chromatographic
purification (Rf = 0.29, toluene/EtOAc = 9 : 1 v/v), 0.53 g
(93%) of 10 was obtained as an amorphous solid, [α]D

23

–51.1 (CHCl3, c = 1.01). – 1H NMR (250 MHz, CDCl3):
δ/ppm = 7.55–7.66 (m, 2H, phenyl-H), 7.41–7.49 (m, 3H,
phenyl-H), 5.60 (d, 1H, 3J1-H/2-H ≈ 8.4, 1-H), 5.60 (q, 1H,
3Jacetal-H/ethylidene-CH3 ≈ 5.0, acetal-H), 5.51 (dd, 1H, 3J2-H/3-H ≈
4.6, 2-H), 5.27 (dd, 1H, 3J3-H/4-H ≈ 2.6, 3J4-H/5-H ≈ 1.6, 4-H),
4.83 (d, 1H, 3Jcarbamoyl-NH/cyclohexyl-CH ≈ 8.1, carbamoyl-NH),
4.42 (dd, 1H, 3-H), 4.32 (ddd, 1H, 3J5-H/6-H ≈ 4.1, 3J5-H/6'-H ≈
8.0, 5-H), 4.26 (dd, 1H, 2J6-H/6'-H ≈11.7, 6-H), 4.19 (dd, 1H,
6'-H), 3.30–3.64 (m, 1H, cyclohexyl-CH), 2.05 (s, 3H, acetyl-
CH3), 1.85–2.01 (m, 2H, cyclohexyl-CH2), 1.52–1.80 (m,
3H, cyclohexyl-CH2), 1.37 (d, 3H, ethylidene-CH3), 1.04–
1.48 (m, 5H, cyclohexyl-CH2). – 13C{1H} NMR (62.9 MHz,
CDCl3): δ/ppm  = 170.6 (acetyl-CO), 153.8 (carbamoyl-CO),
129.6, 129.1, 128.5, (phenyl-CH), 123.6 (phenyl-C), 103.0
(acetal-C), 84.5 (C-1), 74.0, 73.9, 71.3, 66.4 (C-2,3,4,5), 62.1
(C-6), 50.2 (cyclohexyl-CH), 33.1, 25.3, 24.7 (cyclohexyl-
CH2), 21.5, 20.6 (ethylidene-CH3, acetyl-CH3). – 19F{1H}
NMR (235.4 MHz, CDCl3): δ/ppm  = –56.3 (CF3).
C26H31F3N4O7 Calcd.: C 54.93 H 5.50 N 9.85
(568.5) Found: C 55.27 H 5.33 N 9.71.

1-(2,3-O-Ethylidene-β-D-gulopyranosyl)-5-trifluoromethyl-
4-phenyl-1,2,3-triazole (11)

A solution of compound 10 (1.14 g, 2.0 mmol) in 1% metha-
nolic sodium methoxide (10 ml) was heated for 10 h under
reflux (TLC control). The mixture was cooled down, neutral-
ized with an acidic ion exchanger (Amberlite IR 120), fil-
tered, and the filtration residue was washed twice with metha-
nol (10 ml). The combined methanolic solutions were con-
centrated under reduced pressure and the crude product 11
obtained was purified by column chromatography (Rf = 0.15,
toluene/EtOAc = 2 : 1 v/v). Yield of 11: 0.65 g (81%); m.p.
155 °C, [α]D

24 –71.0 (CHCl3, c = 1.10). – 1H NMR (250 MHz,
CDCl3): δ/ppm = 7.51–7.59 (m, 2H, phenyl-H), 7.41–7.50
(m, 3H, phenyl-H), 5.63 (d, 1H, 3J1-H/2-H ≈ 8.3, 1-H), 5.59 (q,
1H, 3Jacetal-H/ethylidene-CH3 ≈5.0,  acetal-H), 5.50 (dd, 1H,
3J2-H/3-H ≈ 4.7, 2-H), 4.46 (dd, 1H, 3J3-H/4-H ≈2.5,  3-H), 4.26
(dd, 1H, 3J4-H/5-H ≈ 1.5, 4-H), 4.00 (ddd, 1H, 3J5-H/6-H ≈ 3.7,
3J5-H/6'-H ≈ 5.2, 5-H), 3.86–3.94 (m, 2H, 6-H, 6'-H), 1.37 (d,
3H, ethylidene-CH3). – 13C{1H} NMR (62.9 MHz, CDCl3):
δ/ppm  = 129.7, 129.2, 128.5, (phenyl-CH), 128.2 (phenyl-
C), 102.9 (acetal-C), 85.3 (C-1), 76.3, 76.3, 71.5, 67.3 (C-
2,3,4,5), 62.7 (C-6), 21.6, (ethylidene-CH3). – 19F{1H} NMR
(235.4 MHz, CDCl3): δ/ppm  = –56.1 (CF3).
C17H18F3N3O5 Calcd.: C 50.88 H 4.52 N 10.47
(401.3) Found: C 50.90 H 4.49 N 10.35.
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1-(6-Deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyran-
os-6-yl)-5-trifluoromethyl-4-phenyl-1,2,3-triazole (13) and 1-
(6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyranos-
6-yl)-4-trifluoromethyl-5-phenyl-1,2,3-triazole (14)

A solution of the azide 12 [1] (0.86 g, 3.0 mmol) and 3,3,3-
trifluoropropinyl-benzene 2 [23] (0.68 g, 4.0 mmol) in tolu-
ene (15 ml) was refluxed for 13 h under argon atmosphere.
After the mixture was concentrated under reduced pressure,
the two regioisomers 13 and 14 were isolated from the resi-
due by column chromatographic separation (toluene/EtOAc
40 : 1 v/v). Yield of syrupy compound 13: 0.46 g (34%), Rf =
0.19, [α]D

23 –47.4 (CHCl3, c = 0.98); compound 14: 0.66 g
(48%), Rf = 0.16; m.p. 88–90 °C, [α]D

23 –59.7 (CHCl3, c =
1.33).
13: 1H NMR (250 MHz, CDCl3): δ/ppm  = 7.98–8.08 (m,
2H, phenyl-H), 7.78–7.88 (m, 3H, phenyl-H), 5.48 (d, 1H,
3J1-H/2-H ≈ 5.1, 1-H), 4.75 (dd, 1H, 3J5-H/6-H ≈ 8.0, 2J6-H/6'-H ≈
14.1, 6-H), 4.68 (dd, 1H, 3J5-H/6'-H ≈ 5.5, 6'-H), 4.67 (dd, 1H,
3J2-H/3-H ≈ 3.0, 3J3-H/4-H ≈ 7.7, 3-H), 4.45 (ddd, 1H, 3J4-H/5-H ≈
2.0, 5-H), 4.33 (dd, 1H, 2-H), 4.30 (dd, 1H, 4-H), 1.51 (s, 3H,
isopropylidene-CH3), 1.46 (s, 3H, isopropylidene-CH3), 1.36
(s, 3H, isopropylidene-CH3), 1.28 (s, 3H, isopropylidene-
CH3). – 13C{1H} NMR (75.5 MHz, CDCl3): δ/ppm = 129.2,
129.0, 128.4 (phenyl-CH), 110.1, 109.1 (2 ketal-C), 96.2 (C-
1), 71.1, 71.0, 70.4 (C-2,3,4), 67.0 (C-5), 50.7 (C-6), 25.9,
25.8, 24.9, 24.6 (4 isopropylidene-CH3). – 19F{1H} NMR
(235.4 MHz, CDCl3): δ/ppm = –55.5 (CF3).
C21H24F3N3O5 Calcd.: C 55.38 H 5.32 N 9.22
(455.4) Found: C 55.53 H 5.25 N 9.05.
14: 1H NMR (250 MHz, CDCl3): δ/ppm = 7.39–7.52 (m,
5H, phenyl-H), 5.42 (d, 1H, 3J1-H/2-H ≈ 4.9, 1-H), 4.62 (dd,
1H, 3J2-H/3-H ≈ 2.7, 3J3-H/4-H ≈ 7.9, 3-H), 4.51 (ddd, 1H,
3J4-H/5-H ≈ 2.1, 3J5-H/6-H ≈ 5.8, 3J5-H/6'-H ≈ 7.3, 5-H), 4.31–4.37
(m, 2H, 6-H, 6'-H), 4.30 (dd, 1H, 2-H), 4.17 (dd, 1H, 4-H),
1.49 (s, 3H, isopropylidene-CH3), 1.28  (s, 3H, isopropyli-
dene-CH3), 1.27 (s, 3H, isopropylidene-CH3), 1.27  (s, 3H,
isopropylidene-CH3). – 13C{1H} NMR (75.5 MHz, CDCl3):
δ/ppm = 130.2, 130.2, 128.6 (phenyl-CH), 124.7 (phenyl-C),
109.9, 109.3 (2 ketal-C), 96.1 (C-1), 71.1, 70.9, 70.4 (C-2,3,4),
67.1 (C-5), 48.1 (C-6), 25.9, 25.8, 24.9, 24.6 (4 isopropyli-
dene-CH3). – 19F{1H} NMR (235.4 MHz, CDCl3): δ/ppm =
–58.9 (CF3).
C21H24F3N3O5 Calcd.: C 55.38 H 5.32 N 9.22
(455.4) Found: C 55.60 H 5.10 N 8.99.

1-(6-Deoxy-D-galactopyranos-6-yl)-4-trifluoromethyl-5-phe-
nyl-1,2,3-triazole (15)

A solution of 14 (0.45 g, 1.0 mmol) in 60% aq. TFA (10 ml)
was stirred at r.t. When the deacetalation was complete after
about 3 h (TLC control with CHCl3/MeOH = 5:1 v/v, Rf =
0.34), 10 ml of water was added and the mixture was concen-
trated under reduced pressure. To remove remainders of TFA
and H2O, the residue was dissolved in toluene (5 ml) and the
solution was concentrated under reduced pressure. After rep-
etition of this procedure the residue was crystallized from
acetone. Yield 0.38 g (100%); m.p. 219 °C (decomp.). –
1H NMR (250 MHz, DMSO-d6): δ/ppm  = 7.47–7.64 (m,
5H, phenyl-H). – 13C{1H} NMR (75.5 MHz, DMSO-d6):
δ/ppm = 129.3, 128.8, 128.6 (phenyl-CH), 101.8, 92.6 (C-1),
82.4, 81.9, 75.9, 69.5, 69.3, 68.8, 68.5, 68.3 (C-2,3,4,5), 54.0,

51.9 (C-6). – 19F{1H} NMR (235.4 MHz, DMSO-d6): δ/ppm
= – 54.8 (CF3).
C15H16F3N3O5 Calcd.: C 48.01 H 4.30 N 11.20
(375.3) Found: C 48.25 H 4.49 N 10.92.

1-[Methyl 4-O-cyclohexylcarbamoyl-6-deoxy-2,3-O-(2,2,2-
trichloroethylidene)-β-D-gulopyranos-6-yl]-4-trifluorome-
thyl-5-phenyl-1,2,3-triazole (17) and 1-[methyl 4-O-cyclo-
hexylcarbamoyl-6-deoxy-2,3-O-(2,2,2-trichloroethylidene)-
β-D-gulopyranos-6-yl]-5-trifluoromethyl-4-phenyl-1,2,3-tri-
azole (18)

A solution of methyl 6-azido-4-O-cyclohexylcarbamoyl-6-
deoxy-2,3-O-(2,2,2-trichloroethylidene)-β-D-gulopyranoside
16 [22] (1.42 g, 3.0 mmol) and 3,3,3-trifluoropropinyl-ben-
zene 2 [23] (0.68 g, 4.0 mmol) in toluene (15 ml) was reflux-
ed for 10 h under argon atmosphere. After the mixture was
concentrated under reduced pressure, the two regioisomers
17 and 18 were isolated from the residue by column chroma-
tographic separation (toluene/EtOAc 40 : 1 v/v). Yield of 17:
0.97 g (50%), Rf = 0.22; m.p. 140–142 °C, [α]D

23  –41.8
(CHCl3, c = 0.97); isomer 18: 0.64 g (33%), Rf = 0.25; m.p.
146–148 °C, [α]D

23 –46.8 (CHCl3, c = 1.00).
17: 1H NMR (250 MHz, CDCl3): δ/ppm = 7.48–7.56 (m,
3H, phenyl-H), 7.36–7.43 (m, 2H, phenyl-H), 5.45 (s, 1H,
acetal-H, 5.20 (dd, 1H, 3J3-H/4-H ≈ 2.5, 3J4-H/5-H ≈ 1.5, 4-H),
4.65 (dd, 1H, 3J2-H/3-H ≈ 5.3, 3-H), 4.59 (d, 1H, 3Jcarbamoyl-NH/

cyclohexyl-CH ≈ 8.2, carbamoyl-NH), 4.55 (ddd, 1H, 3J5-H/6-H ≈
3.3, 3J5-H/6'-H ≈ 10.1, 5-H), 4.42 (dd, 1H, 2J6-H/6'-H ≈ 14.2, 6-
H), 4.32 (dd, 1H, 3J1-H/2-H ≈ 6.8, 2-H), 4.25 (d, 1H, 1-H), 4.21
(dd, 1H, 6'-H), 3.32–3.43 (m, 1H, cyclohexyl-CH), 3.31 (s,
3H, OMe), 1.80–1.93 (m, 2H, cyclohexyl-CH2), 1.48–1.78
(m, 3H, cyclohexyl-CH2), 1.05–1.46 (m, 5H, cyclohexyl-
CH2). – 13C{1H} NMR (75.5 MHz, CDCl3): δ/ppm = 153.6
(carbamoyl-CO), 138.4 (q, 3Jtriazole-C5/F-A,B,C ≈ 2.0, triazole-
C5), 135.9 (q, 2Jtriazole-C4/F-A,B,C ≈ 38.2, triazole-C4), 130.6,
129.9, 129.0 (phenyl-CH), 124.3 (phenyl-C), 120.8 (q,
1JCF3/F-A,B,C ≈ 268.7, CF3), 106.7 (acetal-C), 101.7 (C-1), 98.8
(CCl3) , 76.8, 76.6, 71.0, 66.4 (C-2,3,4,5), 56.9 (MeO), 50.2
(cyclohexyl-CH), 48.1 (C-6), 33.0, 25.3, 24.5 (cyclohexyl-
CH2). – 19F{1H} NMR (235.4 MHz, CDCl3): δ/ppm  = –59.0
(CF3).
C25H28Cl3F3N4O6 Calcd.: C 46.64 H 4.38 N 8.70
(643.9) Found: C 46.57 H 4.29 N 8.69.
18: 1H NMR (250 MHz, CDCl3): δ/ppm = 7.68– 7.55 (m,
2H, phenyl-H), 7.39–7.53 (m, 3H, phenyl-H), 5.47 (s, 1H,
acetal-H), 5.31 (dd, 1H, 3J3-H/4-H ≈ 2.6, 3J4-H/5-H ≈ 1.6, 4-H),
4.88 (d, 1H, 3Jcarbamoyl-NH/cyclohexyl-CH ≈ 8.0, carbamoyl-NH),
4.74 (dd, 1H 3J5-H/6-H ≈ 4.2, 2J6-H/6'-H ≈14.2, 6-H), 4.74 (dd,
1H, 3J2-H/3-H ≈ 5.2, 3-H), 4.67 (dd, 1H, 3J5-H/6'-H ≈ 8.8, 6'-H),
4.51 (ddd, 1H, 5-H), 4.40 (dd, 1H, 3J1-H/2-H ≈ 7.1, 2-H), 4.30
(d, 1H, 1-H), 3.43–3.58 (m, 1H, cyclohexyl-CH), 3.36 (s,
3H, OMe), 1.86–2.02 (m, 2H, cyclohexyl-CH2), 1.52–1.82
(m, 3H, cyclohexyl-CH2), 1.05–1.46 (m, 5H, cyclohexyl-
CH2). – 13C{1H} NMR (75.5 MHz, CDCl3): δ/ppm  = 153.7
(carbamoyl-CO), 129.5, 128.9, 128.5 (phenyl-CH), 128.7
(phenyl-C), 120.3 (q, 1JCF3/F-A,B,C ≈ 269.9, CF3), 106.7 (acetal-
C), 101.6 (C-1), 98.8 (CCl3), 76.8, 76.6, 71.0, 66.5 (C-2,3,4,5),
56.8 (MeO), 50.5 (C-6), 50.3 (cyclohexyl-CH), 33.1, 25.3,
24.6 (cyclohexyl-CH2). – 19F{1H} NMR (235.4 MHz, CDCl3):
δ/ppm  = –55.5 (CF3).
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C25H28Cl3F3N4O6 Calcd.: C 46.64 H 4.38 N 8.70
(643.9) Found: C 46.87 H 4.38 N 8.58.

1-(Methyl 4-O-cyclohexylcarbamoyl-6-deoxy-2,3-O-ethyli-
dene-β-D-gulopyranos-6-yl)-4-trifluoromethyl-5-phenyl-
1,2,3-triazole (19)

1-[Methyl 4-O-cyclohexylcarbamoyl-6-deoxy-2,3-O-(2,2,2-
trichloroethylidene)-β-D-gulopyranos-6-yl]-4-trifluorome-
thyl-5-phenyl-1,2,3-triazole (17) (0.64 g, 1.0 mmol) was hy-
drodechlorinated with Bu3SnH/AIBN as described for com-
pound 9 (reaction time 2.5 h). After column chromatographic
purification (Rf = 0.25, toluene/EtOAc = 9 : 1 v/v), 0.52 g
(97%) of the crystalline product 19 were obtained; m.p. 106–
108 °C (i-PrOH), [α]D

23 –44.9 (CHCl3, c = 0.98). – 1H NMR
(250 MHz, CDCl3): δ/ppm = 7.34–7.56 (m, 5H, phenyl-H),
5.42 (q, 1H, 3Jacetal-H/ethylidene-CH3 ≈ 5.0, acetal-H), 5.08 (dd,
1H, 3J3-H/4-H ≈ 2.5, 3J4-H/5-H ≈ 1.5, 4-H), 4.60 (d, 1H,
3Jcarbamoyl-NH/cyclohexyl-CH ≈ 8.2, carbamoyl-NH), 4.50 (ddd, 1H,
3J5-H/6-H ≈ 3.4, 3J5-H/6'-H ≈10.0, 5-H), 4.71 (dd, 1H, 2J6-H/6'-H ≈
14.0, 6-H), 4.24 (dd, 1H, 6'-H), 4.22 (d, 1H, 3J1-H/2-H ≈7.2, 1-
H), 4.13 (dd, 1H, 3J2-H/3-H ≈ 5.1, 3-H), 3.99 (dd, 1H, 2-H),
3.29 (s, 3H, MeO), 3.25–3.46 (m, 1H, cyclohexyl-CH), 1.48–
1.80 (m, 5H, cyclohexyl-CH2), 1.30 (d, 3H, ethylidene-CH3),
1.00–1.44 (m, 5H, cyclohexyl-CH2). – 13C{1H} NMR (62.9
MHz, CDCl3): δ/ppm = 153.9 (carbamoyl-CO), 138.3 (q,
3Jtriazole C-5/F-A,B,C ≈ 1.9, triazole C-5), 135.8 (q, 2Jtriazole C-4/F-

A,B,C ≈ 38.2, triazole C-4), 130.5, 129.9, 129.0 (phenyl-CH),
124.4 (phenyl-C), 120.8 (q, 1JCF3/F-A,B,C ≈ 268.6, CF3), 102.4,
101.4 (acetal-C, C-1), 74.8, 74.2, 71.0, 67.3 (C-2,3,4,5), 56.8
(MeO), 50.1 (cyclohexyl-CH), 48.3 (C-6), 33.0, 25.3, 24.6
(cyclohexyl-CH2), 21.4 (ethylidene-CH3). – 19F{1H} NMR
(235.4 MHz, CDCl3): δ/ppm  = –59.1 (CF3).
C25H31F3N4O6 Calcd.: C 55.55 H 5.78 N 10.36
(540.5) Found: C 55.46 H 5.74 N 10.05.

1-(Methyl 4-O-cyclohexylcarbamoyl-6-deoxy-2,3-O-ethyli-
dene-β-D-gulopyranos-6-yl)-5-trifluoromethyl-4-phenyl-
1,2,3-triazole (20)

1-[Methyl 4-O-cyclohexylcarbamoyl-6-deoxy-2,3-O-(2,2,2-
trichloroethylidene)-β-D-gulopyranos-6-yl]-5-trifluorome-
thyl-4-phenyl-1,2,3-triazole (18) (0.64 g, 1.0 mmol) was hy-
drodechlorinated with Bu3SnH/AIBN as described for com-
pound 9 (reaction time 3.5 h). After column chromatographic
purification (Rf = 0.28, toluene/EtOAc = 9 : 1 v/v), 0.49 g
(90%) of the crystalline product 20 were obtained; m.p.
180 °C (i-PrOH), [α]D

21 –44.0 (CHCl3, c = 1.06). – 1H NMR
(250 MHz, CDCl3): δ/ppm  = 7.55–7.66 (m, 2H, phenyl-H),
7.40–7.49 (m, 3H, phenyl-H), 5.45 (q, 1H, 3Jacetal-H/ethylidene-

CH3 ≈ 5.0, acetal-H), 5.20 (dd, 1H, 3J3-H/4-H ≈ 2.6, 3J4-H/5-H ≈
1.5, 4-H), 4.88 (d, 1H, 3Jcarbamoyl-NH/cyclohexyl-CH ≈ 8.2, car-
bamoyl-NH), 4.71 (d, 2H, 3J5-H/6-H,6'-H ≈ 6.4, 6-H, 6'-H), 4.32
(dt, 1H, 5-H), 4.27 (d, 1H, 3J1-H/2-H ≈ 7.2, 1-H), 4.21 (dd, 1H,
3J2-H/3-H ≈ 5.0, 3-H), 4.07 (dd, 1H, 2-H), 3.34 (s, 3H, MeO),
3.40– 3.60 (m, 1H, cyclohexyl-CH), 1.86– 2.03 (m, 2H,
cyclohexyl-CH2), 1.53–1.80 (m, 3H, cyclohexyl-CH2), 1.32
(d, 3H, ethylidene-CH3), 1.06–1.47 (m, 5H, cyclohexyl-CH2).
– 13C{1H} NMR (62.9 MHz, CDCl3): δ/ppm = 154.0 (car-
bamoyl-CO), 129.4, 129.0 (phenyl-CH), 128.8 (phenyl-C),
128.5 (phenyl-CH), 102.5, 101.3 (acetal-C, C-1), 74.8, 74.1,
71.1, 67.4 (C-2,3,4,5), 56.8 (MeO), 50.7 (cyclohexyl-CH),

50.2 (C-6), 33.1, 25.4, 24.7 (cyclohexyl-CH2), 21.5 (ethy-
lidene-CH3). – 19F{1H} NMR (235.4 MHz, CDCl3): δ/ppm
= –55.4 (CF3).
C25H31F3N4O6 Calcd.: C 55.55 H 5.78 N 10.36
(540.5) Found: C 55.65 H 5.72 N 10.22.
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